Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Geroscience ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499959

RESUMO

Mice with cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TGAC8) are under a constant state of severe myocardial stress. They have a remarkable ability to adapt to this stress, but they eventually develop accelerated cardiac aging and experience reduced longevity. We have previously demonstrated through bioinformatics that constitutive adenylyl cyclase activation in TGAC8 mice is associated with the activation of inflammation-related signaling pathways. However, the immune response associated with chronic myocardial stress in the TGAC8 mouse remains unexplored. Here we demonstrate that chronic activation of adenylyl cyclase in cardiomyocytes of TGAC8 mice results in activation of cell-autonomous RelA-mediated NF-κB signaling. This is associated with non-cell-autonomous activation of proinflammatory and age-associated signaling in myocardial endothelial cells and myocardial smooth muscle cells, expansion of myocardial immune cells, increase in serum levels of inflammatory cytokines, and changes in the size or composition of lymphoid organs. All these changes precede the appearance of cardiac fibrosis. We provide evidence indicating that RelA activation in cardiomyocytes with chronic activation of adenylyl cyclase is mediated by calcium-protein Kinase A (PKA) signaling. Using a model of chronic cardiomyocyte stress and accelerated aging, we highlight a novel, calcium/PKA/RelA-dependent connection between cardiomyocyte stress, myocardial inflammation, and systemic inflammation. These findings suggest that RelA-mediated signaling in cardiomyocytes might be an adaptive response to stress that, when chronically activated, ultimately contributes to both cardiac and systemic aging.

2.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38284995

RESUMO

In this issue of JEM, Allyn et al. (https://doi.org/10.1084/jem.20230985) provide mechanistic insights into the nuclear organization of the Tcrb locus that permits long-range genomic rearrangements.


Assuntos
Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T alfa-beta/genética
3.
Aging Cell ; 23(1): e13902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37350292

RESUMO

The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.


Assuntos
Envelhecimento , Metabolômica , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Biomarcadores/metabolismo , Senescência Celular
4.
Artigo em Inglês | MEDLINE | ID: mdl-38052484

RESUMO

Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.

5.
J Biol Chem ; 299(12): 105373, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865318

RESUMO

The bacteriophage capsid protein, Psu (polarity suppression), inhibits the bacterial transcription terminator, Rho. In an effort to find nontraditional antibacterial agents, we previously designed peptides from the Psu C terminus that function as inhibitors of Rho. Here, we demonstrated that these peptides have positive surface-charge densities, and they downregulate many genes in Escherichia coli. We hypothesized that these peptides could bind to nucleic acids and repress gene expression. One of these peptides, peptide 33, represses in vitro transcription from the T7A1 and Plac promoters efficiently by blocking the access of RNA polymerase to the promoter, a mode of transcription repression akin to many bacterial repressors. In vivo, expressions of the peptides reduce the total RNA level as well as transcription from Plac and Posm promoters significantly. However, they are less efficient in repressing transcription from the rRNA promoters with a very high turnover of RNA polymerase. The peptide 33 binds to both single and dsDNA as well as to RNA with dissociation constants ranging from 1 to 5 µM exhibiting preferences for the single-stranded DNA and RNAs. These interactions are salt-resistant and not sequence-specific. Interactions with dsDNA are entropy-driven, while it is enthalpy-driven for the ssDNA. This mode of interaction with nucleic acids is similar to many nonspecific ssDNA-binding proteins. Expression of peptide 33 induces cell elongation and impaired cell division, possibly due to the dislodging of the DNA-binding proteins. Overall, we surmised that these synthetic transcription repressors would function like bacterial nucleoid-associated proteins.


Assuntos
Bacteriófagos , Ácidos Nucleicos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Bacteriófagos/metabolismo , Transcrição Gênica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , RNA/metabolismo
6.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37790465

RESUMO

Background: Mice with cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TG AC8 ) are under a constant state of severe myocardial stress. They have a remarkable ability to adapt to this stress, but they eventually develop accelerated cardiac aging and experience reduced longevity. Results: Here we demonstrate that activation of ACVIII in cardiomyocytes results in cell-autonomous RelA-mediated NF-κB signaling. This is associated with non-cell-autonomous activation of proinflammatory and age-associated signaling in myocardial endothelial cells and myocardial smooth muscle cells, expansion of myocardial immune cells, increase in serum levels of inflammatory cytokines, and changes in the size or composition of lymphoid organs. These changes precede the appearance of cardiac fibrosis. We provide evidence indicating that ACVIII-driven RelA activation in cardiomyocytes is mediated by calcium-Protein Kinase A (PKA) signaling. Conclusions: Using a model of chronic cardiomyocyte stress and accelerated aging we highlight a novel, PKA/RelA-dependent connection between cardiomyocyte stress, myocardial para-inflammation and systemic inflammation. These findings point to RelA-mediated signaling in cardiomyocytes and inter-organ communication between the heart and lymphoid organs as novel potential therapeutic targets to reduce age-associated myocardial deterioration.

7.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589453

RESUMO

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1ß) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.


Assuntos
Envelhecimento , Linfócitos T CD8-Positivos , Humanos , Envelhecimento/genética , Ativação do Complemento , Metilação de DNA , Epigênese Genética
8.
Nat Immunol ; 24(9): 1552-1564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524800

RESUMO

The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.


Assuntos
NF-kappa B , Fator de Transcrição RelA , NF-kappa B/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Linfócitos B/metabolismo , Sítios de Ligação , Receptores de Antígenos/metabolismo
9.
Aging Cell ; 22(7): e13847, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309088

RESUMO

Age-associated changes in the DNA methylation state can be used to assess the pace of aging. However, it is not understood what mechanisms drive these changes and whether these changes affect the development of aging phenotypes and the aging process in general. This study was aimed at gaining a more comprehensive understanding of aging-related methylation changes across the whole genome, and relating these changes to biological functions. It has been shown that skeletal muscle and blood monocytes undergo typical changes with aging. Using whole-genome bisulfite sequencing, we sought to characterize the genome-wide changes in methylation of DNA derived from both skeletal muscle and blood monocytes, and link these changes to specific genes and pathways through enrichment analysis. We found that methylation changes occur with aging at the locations enriched for developmental and neuronal pathways regulated in these two peripheral tissues. These results contribute to our understanding of changes in epigenome in human aging.


Assuntos
Envelhecimento , Metilação de DNA , Humanos , Envelhecimento/genética , Metilação de DNA/genética , Genoma , Processamento de Proteína Pós-Traducional , Fenótipo , Ilhas de CpG , Epigênese Genética
10.
Int J Biol Macromol ; 236: 124025, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921817

RESUMO

The mycobacteriophages encode unique proteins that are potent to be therapeutic agents. We screened several clones with mycobactericidal properties from a genomic library of mycobacteriophages. Here we report the properties of one such clone coding the gene product, Gp49, of the phage Che12. Gp49 is a 16 kD dimeric protein having an HTH motif at its C-terminal and is highly conserved among mycobacteriophages and likely to be part of phage DNA replication machinery. Alphafold predicts it to be an α-helical protein. However, its CD spectrum showed it to be predominantly ß-sheeted. It is a high-affinity heparin-binding protein having similarities with the macrophage protein Azurocidin. Its ß-sheeted apo-structure gets transformed into α-helix upon binding to heparin. It binds to linear dsDNA as well as ssDNA and RNA cooperatively in a sequence non-specific manner. This DNA binding property enables it to inhibit both in vitro and in vivo transcription. The c-terminal HTH motif is responsible for binding to both heparin and nucleic acids. Its in vivo localization on DNA could cause displacements of many DNA-binding proteins from the bacterial chromosome. We surmised that the bactericidal activity of Gp49 arises from its non-specific DNA binding leading to the inhibition of many host-DNA-dependent processes. Its heparin-binding ability could have therapeutic/diagnostic usages in bacterial sepsis treatment.


Assuntos
Micobacteriófagos , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleoproteínas , Heparina
11.
Front Immunol ; 14: 1067459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756127

RESUMO

The ubiquitously expressed transcription factor TFII-I is a multifunctional protein with pleiotropic roles in gene regulation. TFII-I associated polymorphisms are implicated in Sjögren's syndrome and Lupus in humans and, germline deletion of the Gtf2i gene in mice leads to embryonic lethality. Here we report a unique role for TFII-I in homeostasis of innate properties of B lymphocytes. Loss of Gtf2i in murine B lineage cells leads to an alteration in transcriptome, chromatin landscape and associated transcription factor binding sites, which exhibits myeloid-like features and coincides with enhanced sensitivity to LPS induced gene expression. TFII-I deficient B cells also show increased switching to IgG3, a phenotype associated with inflammation. These results demonstrate a role for TFII-I in maintaining immune homeostasis and provide clues for GTF2I polymorphisms associated with B cell dominated autoimmune diseases in humans.


Assuntos
Síndrome de Sjogren , Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Ligação Proteica , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
12.
Mol Neurodegener ; 17(1): 60, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064424

RESUMO

BACKGROUND: Although ɑ-synuclein (ɑ-syn) spreading in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) has been extensively investigated, the role of aging in the manifestation of disease remains unclear. METHODS: We explored the role of aging and inflammation in the pathogenesis of synucleinopathies in a mouse model of DLB/PD initiated by intrastriatal injection of ɑ-syn preformed fibrils (pff). RESULTS: We found that aged mice showed more extensive accumulation of ɑ-syn in selected brain regions and behavioral deficits that were associated with greater infiltration of T cells and microgliosis. Microglial inflammatory gene expression induced by ɑ-syn-pff injection in young mice had hallmarks of aged microglia, indicating that enhanced age-associated pathologies may result from inflammatory synergy between aging and the effects of ɑ-syn aggregation. Based on the transcriptomics analysis projected from Ingenuity Pathway Analysis, we found a network that included colony stimulating factor 2 (CSF2), LPS related genes, TNFɑ and poly rl:rC-RNA as common regulators. CONCLUSIONS: We propose that aging related inflammation (eg: CSF2) influences outcomes of pathological spreading of ɑ-syn and suggest that targeting neuro-immune responses might be important in developing treatments for DLB/PD.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
14.
Immunity ; 55(6): 1051-1066.e4, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35649416

RESUMO

Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Sequência de Aminoácidos , Anticorpos , Formação de Anticorpos , Bacteriófagos/genética , Estudo de Associação Genômica Ampla , Humanos , Epitopos Imunodominantes , Prevalência , Fatores de Virulência/genética
15.
J Biol Chem ; 298(6): 102001, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500654

RESUMO

Bacterial Rho is a RNA-dependent ATPase that functions in the termination of transcription. The in vivo nature of the bacterial Rho-dependent terminators, as well as the mechanism of the Rho-dependent termination process, are not fully understood. Here, we measured the in vivo termination efficiencies of 72 Rho-dependent terminators in Escherichia coli by systematically performing qRT-PCR analyses of cDNA prepared from mid-log phase bacterial cultures. We found that these terminators exhibited a wide range of efficiencies, and many behaved differently in vivo compared to the predicted or experimentally determined efficiencies in vitro. Rho-utilization sites (rut sites) present in the RNA terminator sequences are characterized by the presence of C-rich/G-poor sequences or C > G bubbles. We found that weaker terminators exhibited a robust correlation with the properties (size, length, density, etc.) of these C > G bubbles of their respective rut sites, while stronger terminators lack this correlation, suggesting a limited role of rut sequences in controlling in vivo termination efficiencies. We also found that in vivo termination efficiencies are dependent on the rates of ATP hydrolysis as well as Rho-translocation on the nascent RNA. We demonstrate that weaker terminators, in addition to having rut sites with diminished C > G bubble sizes, are dependent on the Rho-auxiliary factor, NusG, in vivo. From these results, we concluded that in vivo Rho-dependent termination follows a nascent RNA-dependent pathway, where Rho-translocation along the RNA is essential and rut sequences may recruit Rho in vivo, but Rho-rut binding strengths do not regulate termination efficiencies.


Assuntos
Proteínas de Escherichia coli , RNA Bacteriano , Fator Rho , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Fator Rho/genética , Fator Rho/metabolismo , Regiões Terminadoras Genéticas , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(18): e2115567119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476510

RESUMO

B and T lymphocytes of the adaptive immune system undergo proliferative bursts to generate pools of antigen-specific cells for effective immunity. Here we show that in contrast to the canonical view that G1 progression signals are essential after mitosis to reenter S phase, B lymphocytes sustain several rounds of mitogen-independent cell division following the first mitosis. Such division appears to be driven by unique characteristics of the postmitotic G1 phase that has features of S and G2/M phases. Birc5 (survivin), a protein associated with chromosome segregation in G2/M, is expressed in the G1 phase of divided B cells and is necessary for mitogen-independent divisions. The partially active G1 phase and propensity for apoptosis inherited after each division may underlie rapid proliferation and cell death, which are hallmarks of B cell proliferative responses.


Assuntos
Mitógenos , Proteômica , Linfócitos B , Divisão Celular , Fase G1 , Peptídeos e Proteínas de Sinalização Intercelular , Survivina/genética
17.
Opt Lett ; 47(1): 46-49, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951879

RESUMO

We present a spatiotemporally mode-locked Mamyshev oscillator. A wide variety of multimode mode-locked states, with varying degrees of spatiotemporal coupling, are observed. We find that some control of the modal content of the output beam is possible through the cavity design. Comparison of simulations with experiments indicates that spatiotemporal mode locking (STML) is enabled by nonlinear intermodal interactions and spatial filtering, along with the Mamyshev mechanism. This work represents a first, to the best of our knowledge, exploration of STML in an oscillator with a Mamyshev saturable absorber.

18.
Immunity ; 54(11): 2465-2480.e5, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34706222

RESUMO

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica , Regulação da Expressão Gênica , Imunidade , Fatores de Transcrição/metabolismo , Transcriptoma , Epigenômica/métodos , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Fatores de Transcrição/genética
19.
FEBS Lett ; 595(15): 2057-2067, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115879

RESUMO

Bacterial Rho-dependent transcription termination regulates many physiological processes. Here, we report that it controls the expression of toxin-antitoxin (TA) modules of cryptic prophages in E. coli. Microarray profiles of Rho mutants showed upregulation of genes of the CP4-6 and CP4-44 prophages, including their TA modules, that were validated by RT-qPCR. Analysis of the in vivo termination efficiency and the mRNA sequences of these prophages revealed the presence of many Rho-dependent terminators. The prophage TA modules exhibited synthetic lethality with the Rho mutants, indicating functional involvement of Rho-dependent termination in controlling these modules. Rho-dependent termination does not regulate most of the chromosomal TA modules. We conclude that Rho-dependent termination specifically silences the TA modules of prophages, thereby augmenting bacterial innate immunity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Inativação Gênica , Prófagos/genética , Sistemas Toxina-Antitoxina/genética , Terminação da Transcrição Genética , Escherichia coli/imunologia , Imunidade Inata , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Nat Commun ; 12(1): 2014, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795677

RESUMO

Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.


Assuntos
Envelhecimento Saudável/genética , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Perfilação da Expressão Gênica , Homeostase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/genética , Isoformas de RNA/genética , RNA não Traduzido/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...